# **Lesson Study** Facilitated by Leyton Schnellert NDSS April 7, 2011



# How students integrate & apply what they learn

- -Incorporate key concepts and relevant skills into product design
- -Encourage student choice as part of the product design
- -Products should involve students in relevant and valued activities
- -Teach students skills necessary to successfully complete product
- -Use multiple criteria to assess the product
- -During and after product completion, encourage students to reflect on their learning

### Following up

• Tad's slides





## Where to start?

- where is backward design naturally in use in your teaching?
- what knowledge is truly essential and enduring in a unit?
- avoid the pitfalls of activity-based planning and planning for coverage
- turn intentions into questions
- what strategies/skills do they need to develop to be successful learners in your unit assessment(s)?
- how can you mentor students to become more successful mathematicians/scientists/ historians/readers/writers/thinkers with all of these contextual factors in mind?

# Open-Ended Learning Strategies

- Connect/activate
- Process/acquire
- Transform and personalize/apply



lesson study is to plan, observe and discuss the research lesson in ways that strengthen the pathways of learning for teachers and students.



| Big Ideas                                                                      | Student Outcomes              |
|--------------------------------------------------------------------------------|-------------------------------|
| key concepts/essential understandings                                          | Important skills or processes |
| Essential question                                                             | Students will be able to      |
|                                                                                |                               |
|                                                                                |                               |
| Connecting                                                                     |                               |
| Purpose: Engage/Activate prior knowledge/ Predict content/ Focus on a purpose: |                               |
|                                                                                |                               |
| Processing                                                                     |                               |
| Purpose: Construct meaning/Monitor understanding/ Process ideas                |                               |
|                                                                                |                               |
|                                                                                |                               |
| Transforming & Personalizing                                                   |                               |
| Purpose: Synthsize ideas/ Apply knowledge/ Reflect on thinking and learning    |                               |
|                                                                                |                               |
|                                                                                |                               |
| Brownlie, Feniak & Schnellert, 2006                                            |                               |

## Essential question: How can we use patterns to understand polynomials?

Key concepts

Important skills or processes

Difference of squares:
-expression is a binomial.
-first term is a perfect square.
-last term is a perfect square.
- operation between terms is subtraction ("difference")
The two binomial factors will be the square roots of the squares, connected by a + and - signs.

Perfect Square Trinomial
-first term is a perfect square.
-last term is a perfect square.
-middle term is twice the
product of the square root of
the first term and the square
root of the last term.

-Factor the difference of square -Factor perfect square trinomials -assess human impact -identify the main points in a science related article or Illustration (determine importance, infer, compare, evaluate, make connections

#### **EQ:** How can we use patterns to understand polynomials?

#### Key concepts

- Difference of squares
- Perfect square trinomials

#### **Essential understanding:**

When factoring, you can use the **pattern** that formed the products.

#### Important skills or processes

- Factor the difference of squares
- **Factor** perfect square trinomials
- Identify products within a trinomial
- **Expand** expressions
- Multiply expressions

#### Connecting (eg. Engage/Activate prior knowledge/ Predict content/ Focus on a purpose)

- Students complete warm-up (review questions).
- Debrief with a partner, how can you figure out the product of two expressions?
- Share out in large group and record responses

#### Processing (eg. Construct meaning/Monitor understanding/ Process ideas

- Students participate in "investigate" factor using **algebra tiles**: "use the algebra tiles to factor these triomials" "Sketch what you did"
- Give up to 10 minutes for exploration and representation
- Teachers circulate and ask questions like, "what are you trying?" "what are you noticing" "how did you figure that out?"
- Partner Talk: "Compare what you did with a partner" (or two)
- Agree on defining characteristics of factoring
- Report out/debrief: What are defining characteristics of factoring these polynomials. Explain why they are special.

### **Transforming & Personalizing:** (eg. Synthesize ideas/ Apply knowledge/ Reflect on thinking and learning)

- Try out what you know with two of the questions
- Students enter the main ideas and examples into foldable

Come back to EQ: How can we use patterns to understand polynomials?

How can you figure out the product of two expressions?

Use the algebra tiles to factor these triomials

Sketch what you did

**Partner Talk:** 

Compare what you did with a partner

### **Partner Talk:**

What are defining characteristics of factoring these polynomials?

Explain why these polynomials special?

Try out...

Try out what you know with two of the questions

**Foldables** 

Represent the main ideas and include examples in your foldable

**Essential Question** 

How can we use patterns to understand polynomials?



#### A new resource

### Open-ended tasks



Using a total of 6 algebra tiles, represent a polynomial. What are the factors?...

When you model a certain algebraic expression with algebra tiles, it forms a square. What might the tiles be?

Small & Lin, Nelson Canada

# Planning

GOALS

Goals: What do we want to develop/ explore/ change/ refine to better meet the diverse needs of diverse learners?

RATIONALE

Rationale: Why are we choosing this focus?

PLAN

Plan: How will we do this?